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1. INTRODUCTION

® In thiggeport we investigate the scattering of scalar waves from a distribu-
tion of a finite number of scatterers. The technique we employ was developed by
Montroll and West! to describe the discrete scattering of scalar waves from

o defects on regular lattices. The method makes no assumptions about the sym-
metry of the scatterers and therefore can be applied to inhomogeneities of arbi-
trary shape. The majority of the approaches used in the past have had to either

® truncate the multiple scattering integrals at some appropriate orderz or res-
trict the investigation to scatterers having a high degree of symmetry.3 Ve
avoid both these limitations here by characterizing a scatterer by a distribution

® of N defects and solving the scattering problem for these N defects ezactly. The

only limitation of the technique is the maximum number of defects one can use
to specify the scatterer, which in turn is determined by limitations in computa- 8
® ' tion time.

The problem posed by the scattering of a scalar wave from a fixed obstacle

of known shape and composition is primarily numerical and involves the solution

DRIV IRT ¢ TITY

® of a linear integral equation. The propagation of an ultrasonic wave through a
homogeneous, isotropic elastic material is described by a scalar wave equation.
The scattering of such a wave from an imperfection in the solid generates both
® longitudinal and transverse waves, which satisfy linear integral equations with a
propagation kernel given by a Greens tensor. At present a numerically tract-
able theory for the scattering of an elastic wave from a flaw of arbitrary shape,

i.e. one not possessing spatial symmetry, does not exist. In nondestructive

evaluation (NDE), where such waves are used as probes to determine the shape,
size and composition of flaws in materials, the analysis has been restricted to

either long or short wave approximations. In the former case the Born
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approximation has been used ext.ensively5 and in the latter a generalization of

6 has been

® the diffractive geometric optics approximation originally due to Keller
used. An approach which can span the gap in wavelengths between these two

extremes is highly desirable.

® Herein we limit our discussion to scalar waves scattering from inhomo-
geneities and examine properties of the scattered wavefield in the far field
region. Among the scattering configurations we examine are line scatterers of
o finite length, i.e., hairline cracks, including the effects of bends in the crack and
cracks of finite lateral extent also rectangular patches of scatterers. The exact
scattered wayeﬁeld from such theoretically repelling, but physically interesting
® objects has not been calculated previously.

In Section 2 we review the mathematical formalism for the scattering of
scalar waves from defects on a simnple cubic lattice. The lattice is chosen for
& computational convenience and is not to be confused with the crystatl lattice of
the material. A real metal such as iron consists of an agglomeration of crystals
having a characteristic dimension of 0.025 cm with arbitrary shapes and orienta-
® tions. Each of these crystals is called a grain and there exists a distribution of

grain sizes in such polycrystalline materials. The distribution of grain sizes

determines the fracture micro-mechanics of the elastic material and can dom-
%. inate such effects as crack formation and propagation. Here we are not con-
cerned with the generation or evolution of cracks, but rather with their detec-
tior;. Thus we feel that the use of our computational lattice is justified for this
“ @ preliminary investigation of S-wave scattering in NDE. We show in Section 2 that
in the solution for the scattering of a wave from N defects no assumptions are
made about the relative positioning of the defects. An extended scattering
object is therefore represented by a distribution of N such defects. The

Montroll-West model solution is not an exact representation of the scattering .
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from a flaw, because the flaw is represented by only N defects. However, the
ratio of determinants is the exact scattering solution to the N point represen-

1 7Tme exact nature of the model enables one to exploit the

tation of the flaw.
method to determine the effects of interference and resonance in the specular

reflection from cracks.

In Section 3 we discuss the physical interpretation of the form of the solu-
tion to the N defect scattering problem. One can relate the terms in the expan-
sion of the determinants to scattering diagrams and associate elements with
particular multiple scattering effects. In this way various effects can be sys-
tematically suppressed by using approximations to the expanded form of the
determinants. It is suggested that this technique can be used to check other
approximation methods in situations where exact analytic or numerical calcula-

tions cannot be made using more standard methods.

In Section 4 we present the results of our calculations.
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2. DISCRETE SCATTERING MODEL
A Continuum Equations
The propagation of a scalar wave through a homogeneous, isotropic elastic

material is described by the wave equation

1 2
Vy(rt)- 35 Z-y(rt) = 0 (1)
c* ot
where Y( r,t ) is the wavefleld at position r and time t -2d c is the wave speed in
the material. For a wavefield of frequency w, i.e. ¥(rt) = d(r) exp [ —iot)

we can rewrite (2.1) as the Helmholtz equation

-é—ve@(r)+nzlc,z§(r)=0 (2.2)

where the factor of é—has been introduced for later convenience and

n? = o?/ 2c%¢ The Helmholtz equation is an elliptic partial differential equa-
tion, so that in order to find the field ¢ at a given point r one must solve the
equation for the field at all points in space. This property of elliptic partial
differential equations severely limits the analytical and numerical tractability of
(2.2).

The Helmholtz equation arises in many contexts, e.g. in the propagation of
electromagnetic waves in media where polarization effects are not important;
the Schrédinger description of a matter wave in an energy eigenstate, etc. Each
of these applications has precipitated its own sequence of approximations for
solving (2.2), including the conversion of (2.2) into a parabolic differential equa-
tion. The physically interesting situation is when the medium is non-
homogeneous, e.g. flaws in an elastic material. In this case we write

n? = 1+V(r)/ k§ (2.3)
where V ( r) characterizes the inhomogeneity. This function can also be the

potential in quantum mechanics, the variable index of refraction in a medium

with changing optical properties, the spatially dependent dielectric coeflicient
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for a plasma with density variations, etc. The solution of (2.2) with (2.3) inserted
® is given by the integral equation
@(r) = &(r)-fg(rring vV (r) ¢ (r)d¥r (2.4)
where g ( r, I';np) is the Greens function that satisfies the equation
g - Vg(r.ring) +k§ ring) = 6(r -
.z— g( I, 'nO) 0 g( T, -nO) - ( r r’), (25)
and $( r) is the wavefield when V(r) = 0.
B. Discrete Equations
* The discrete analog of the Helmholtz equation is here obtained by interpret-
ing the V3 in (2.1) as the second difference "Laplacian”
w= 1 E; -2+ EiY) 2.6)
° 52 ,_Z:‘ (Ey i (
where the Ej*!'s are the discrete translation operators on a simple cubic lattice,
ie.
[ ] f(ll-l;ln)zE;f(ll-ly"lln)
=Ej—1f(ll"'lj+1"'ln). (27) ¢
The position vector r = 1b has the lattice components (I;.15,l3) with the ele- .
o ments of 1 being integers and b is the lattice spacing. The free lattice can -
support the propagation of plane waves with frequency » and wave vector g:
k = (k,kzk3s) so we substitute the plane wave "
A
®
B (10) = explik-1b] (2.8)
into (2.2) and replace n2k§ by the eigenvalues Ay, i.e.
° A = -&2—[ 3 - cos(bk,) - cos(bky) - cos(bkg)]. (2.9)
We impose periodic boundary conditions on the lattice such that
d(z+M,yz) = dzy+Nb2) = d(z.y.2+Nb) = &(z,y,2z). This imposi- $
° tion restricts the components of k to integral multiples of 27 / Nb, i.e., J}
kK = %:—n where n = (n,,nang) and {n,.nana} = 0,1, - - N. Introducing the E,
.
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lattice Greens function

G (1bing) = -A}-a-z; Anexpti Zon- 1y (2.10)

into the discrete analog of (2.5) and equating coeflicientsof exp {i2rn.1/N },

ylelds A , = (nd-Ay)~!. Thus the Greens function on the simple cubic lattice is

given by

G (M mg) = B § exp {i2mrn-1/ N} (2.11)
N° ningny =1 @g b? -3] + f} cos (2mny/ N) \
i=

when there are N lattice sites in each of the three dimensions. The Greens func-

tion (2.11) describes the free propagation of a plane wave on a homogeneous iso-

tropic simple cubic lattice.

C. "Potential” Scattering
We consider a set of time independent defects on the set of lattice points
fel.a=1,2.. n Inthe presence of these defects the discrete Helmholtz

equation takes on the inhomogeneous form

[-é—Ahk&]Q(lb): - A V(1) 2(1d) (2.12)
where
k§ 1= {la}
v(1) = { 0 otherwise (2.13)

and A (= -:f;) is the strength of the defect, here produced by a variation in the
0

density at the set of sites {1 ,}. We shall refer to V (1) as the scattering poten-

tial for the wave and A as its strength. The plane wave (2.8) is a solution to (2.12)




......................

..........................

in the limit A » 0. The full solution of the inhomogeneous equation (2.12) is then
a linear superposition of the incident plane wave and the scattered wave pro-

duced by the potential, i.e.

B(16) = expliki-16] - A 3 G(1-lang V (108 (1.6) (2.14)
a=1
which is analogous to the continuum solution (2.4). We have indicated the value

of the incident wave vector by k ; in (2.14).
To solve equation (2.14) for the total wave field ¢ (1 b) we introduce the

notation

Gag = G(la-lping): Goa = G(1-14:m0): &a = ¥(1,d)

Vo = V(1) (2.15)
Then if we successively let 1 be equal to the location of each of the n potential

sites {1, {in(2.14) we obtain the n inhomogeneous linear equations

(1 + AGqn Vl) b, + A G Voo +AGip Vp $2 = expitln 3 ) ;

AGy, Vi) + (1 + AGa V) b -+ - +AGen Vo O = explik; Ib |

explik ‘1nb } .

AGa Vi @) + AGaz V2 82+ + (14AGrn Vn )0

The solution to this set of equations when n=2 is

1 [ exp('ik.--l,b) AGyz Vo J

b = Bz | exp(iky 12b) 1+AGpV: (2.17a)
1 ’1+}\Gu V‘ exp(‘i,k‘llb)
b2 = A, (MG i exp(ik; 1zb) (2.17b)

where




1+AGu Vi AGpVe
Be =1 AGyVi 1+AGzV;

(2.17¢)

When (2.17a) and (2.17b) are introduced into the solution (2.14), the full expres-
sion for $( 1b) becomes a sum of terms which is easily arranged as the ratio of
two determinants. The total wavefield at the observation site 1is then given by
[ exp(iki-16) AGuVi AGgVe
& (1b) = Kl{ exp(ik;-1,b) 1+AGnV, AGyg Ve (2.18)
exp('lk‘lgb) AGZ] Vl 1 +AG& Vz
The above argument may be repeated in every detail to obtain the total

wavefield after scattering from n point potentials:

exp(tk,lb) AGO]V[ AGQ,. Vn
1 exp(ik;llb) 1+X011Vl AG],.V,.
$(1b) = : : : (2.19)
exp (iki 1nd) AGuVi-- 1+AGum Vi
where
By, = detlS,s + X G Vpl: 0 = 1,2, - n . (2.20)
We define the function D,(1,2, - - - n) by the determinant
exp(ik; 1,0) AGzVz--- AGiy Wy
D,(1.2,--n) = 1+A Gge Vs : (2.21)
exp(ik; ‘1,0 ) = 1+A G ¥,
and are therefore able to express the wavefield at the site 1, as
$(1,6) = D, (1,2, - -n)/4, . (2.22)
At the arbitrary potential site 1, we can write the wavefield as
®(1gb) = Dg(BB+1...m,  B-1)/N, (2.23)

where the ordering of the indices in the determinant D, is just a cyclic permuta-

tion of the lattice site indices in (2.21). The exact total wavefield can then be

written as

e o St e
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$(1b) = expliki-1b]- 1"7 P Goo Va Da (2.24)
a=1

n=D Ay

which is an expansion of the determinant solution (2.19) in terms of minors.
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3. INTERPRETATION OF EXACT SOLUTION

In this section we investigate expressions for the scattered wavefield as

sums of contributions from single scattering, double scattering, triple scattering

etc. The series we obtain are analogous to the Born series, but the individual

propagators are renormalized, i.e. they contain factors that correspond to the

resummation of interaction terms of a particular form. Let us first examine

various choices for these resummations.

A Renormalized Potentials and Propagators

Consider the following factored form for the determinant A,:

B, = (1+AGu V) (1 + AGpeVa) - Aq

where we define the scaled determinant
An = detlbyg+ (1-60g)AGap Vgl B = 1.2, -+ m
and -t-’, is to be interpreted as the renormalized potential
Vp= Vg(L+AGapVp)™* .

In terms of A, and Vp the wavefield (2.19) can be expressed as

[’ ~ -~
exp(ikilb) AGQ]VI AGO"VTB
exp(ik;-1;b) 1 A Gy V,
‘b(lb)= :-1__ . 1 . In 'n
| exp(ik; 1ab) AG,V; 1

Each off-diagonal element of the determinant {3.4) has the form

A Gap V,

AG"V’ = 1+AGppr

which corresponds to a self-interaction term in a diagrammatic expansion.

Such resummations are mandatory when considering scattering from potentials

= A Ga‘ V,')\z G‘,p Vp Gpﬁ V‘ + O(Rs) .

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

‘‘‘‘‘

]
R
o
e
3
B
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A
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o
i whose strength becomes singular at short distances, e.g. nuclear scattering,
]

PY hard spheres collisions or specular reflections of scalar waves from caustics. It is
clear that as A Vg+= each terms on the right hand side of (3.5) diverges,
whereas the infinite series converges to G,s / Ggg . Thus all the terms in the

® wavefield (3.4) are expressed in terms of the renormalized potentials so that
each term individually remains finite as A Vg-+ =, i.e. xl‘;m AVg = 1/Gpg.

,-u.
In the second renormalized form the determinant 4A,, is written in the fac-
® tored form
~
An = (1 + AGI]VI) (1+AG&V2) co A" (3.6)
. L J
where we define the scaled determinant A, as
-~ ~
B = detlog+ (1-8ag) A Gog Vgl :af = 1.2,- - n (3.7)
® and G, is to be interpreted as the renormalized propagator
Gap = Gag (1 + A Gag Vo) %¥(1 + A GagVp) ™. (3.8)
® Again we note that A G ,4 V¥ remains finite as the set of potentials | V, | become
infinite (as long as they all become infinite in the same way).
~ ~
In terms of A , and G 44 the total wavefield can be written as
¢ [
exp(ikl-lb) Uy Un
| -
‘ §(16) = 2 : ST (3.10)
An g ~ .
® Wa AGn Uy R
where we have introduced the functions.
® Us = A Goa Va/ (1 + A Gaa Vo). (3.11a)
We = exp(iki.lab )/ (1+ AGaa Va)%. (3.11b)
®

s LaMBEES *

s BN A VY SIS IEN

y4

" v O W ]
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In this factorization, an expansion of the determinant (3.10) in minors always
b yields terms of the form U, ¥, which remain finite for singular potentials. The —-'
renormalization Greens functions in (3.10) can be interpreted as the propaga-
tion of a plane wave on a lattice distorted by the presence of the J‘
- n point-potentials. ._%
-
B. Multiple Scattering Approximations o]
Consider first the case of plane wave scattering from three point potentials, J
P fla} = 1,.12.15. The solution (3.4) can be expressed in terms of: .
Gag = A Gap Vp (3.12)
as
»
lexp(iki.1b) go goz gua
oy feelikiLid) 1 g gis
3 lexp(ik;.lsb) g3 gs: 3

Expanding the determinant in the numerator of (3.13) yields

B(1b) = ™™+ L P go, et "=°[Zz<a> + L Gap Zw,.] (3.14)
Ag °=! fra pry
The quantity Zz (1) is the 2 x 2 determinant Zz which involves only the g's with
subscripts 2 and 3 but not 1. Each term in the expansion can be identified with a
scattering diagram, [cf. Figure 1] . Figure 1a represents the single scattering of
our original plane wave by the potential at site 1,. The full form of the contribu-

tinn of that term to d(1b) is

AT . ~ 1o Bo(I
1 z:(_) LR N AL R A-i(l) .

Aa AS

go (3.15)

The factor exp(i k,-1,0) in (3.15) represents the plane wave incident upon the

scattering point 1,; AV, represents the effective (renormalized) scattering

...............

......
........
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potential and Gp; corresponds to the scattered wave which propagates from 1,
to the observer at 1. The ratio of the A's is the contribution of the other scatter-
ing points to the single scattered amplitude even though they are not directly
involved in the scattering. They give rise to the distortion of. the underling lat-

tice very much like a mean field in which the single scattering occurs. AsA -

0, V; » V; [cf. (3.3)] and the ratio of the A's approaches unity so that (3.15)
becomes a contribution to the first Born approximation of the solution in this
limit.

In Figure 1b the diagram corresponding to the double scattering term

As'goags explik; 1,6} (3.16)

is depicted. Interpreting the factors in (3.16) from right to left, we have, the
plane wave incident on lattice site 1;, the scattering from 1, to 13 followed by

the scattering from lg to the observer at 1. The influence of those points not

directly involved in the scattering is A, (1,3)/ As. but since A, = 1, only the Ag
factor appears.

These results are immediately generalized to the case of m—th order
scattering in a system of n scattering centers. The contribution to $(1b ) of

the scattering sequence 1, »1 " 14, + observer is

Q-1

iki-a — = = N A
90a,9a102"  "FJam_z'am-1Tam_11 € : ,cAn—m (al-a2-"'-am-l-1)/ An (3.17)

wherewe let A, _,, (&,&z - * - .Gm-1.1) represent the determinant A,_, which

involves the (n-m) points not including the points from which the wave has been

.ty
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scattered. Hence the field observed at site 1 can be expressed in the series

form
B (16) = expliki16] + 3 goa a'%' A, (@) A
a=1
1 -~ = ~
2 goaGap € il An—Z(a-ﬁ)/ Bp +- - (3.16)

af=1 M
This expansion is the generalization of the multiple Born expansion, but with all
terms renormalized. j

................
..................................
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4. SCATTERING CROSS SECTION

As mentioned in the Introduction, the use of ultrasonic waves as a probe
into the structure of materials has been very fruitful. In particular, measure-
ments of the total power transmitted from source to receiver through an elastic
material provides information on the distribution of scattering centers within
that material. The attenuation of the ultrasonic wave in a distance z along its
direction of propagation is exp [ - 0(w)z] where the attenuation coeflicient o(w)
is dependent on the frequency of the incident wave and is proportional to the
average cross section of the scatterers in the material. This relation has been
used to determine the distribution of grain sizes in polycrystalline materials. If
the attenuation of the wave is due primarily to the elastic scattering of energy
out of the direction of propagation, then the elastic scattering cross section is a
quantitative measure of how much the incident wave is attenuated along the
straight line path joining the source and receiver. Even in the case of a localized
scatterer such as a crack, the scattering cross section determines the intensity

of the signal received at different observation points.

In the continuum the total wave field can be written as

#(r) = explikr)+ ZRTL £ () (4.1)

where the incident wave vector is k; = f(ko , the final wave vector isk, = rkg
in terms of the unit vectors 11 = k/k, ; = r/ r. Here ris the asymptotic loca-
tion of the observer; f (ii.l.: s ) is the amplitude of the scattered wave and

cos ~}( ii : i 7 ) = Bisthe scattering angle. The differential scattering cross

section is given by

49 - 1f (ko) P2 (4.2)

and the total scattering cross section is obtained by integrating {4.2) over the




solid angle d} = sin®dB@dy i.c

” - -~
gt = 21 ) |f(kik,)?sin@d @ . (4.3)
0

The total wavefield on the lattice is given by (2.24) as

8(16) = exp(iki~lbi-At—i Goa Vo Dy - (4.4)

a=1

The scattered intensity is observed at 1 which is generally a considerable dis-
tance from a typical scattering site 1, . Hence, the large 1 approximation can be
used for Gg, . This is just the Greens function for the original continuum
medium. The other G's in the determinant D, are given by the appropriate lat-
tice Greens functions [cf. (2.11)] determining the wave propagation among

potential sites {1,{. We consider the limit of the lattice Greens function (2.11)

as N -» = and define the continuous variable lim 2n n; = ¢; so that (2.11)
n e

N
becomes
2 " i 3
Gbing = b exp(il-9)d°p , (4.5)
7 (@) J :/;f (kg b2-3) + 3" cosg;
=

Now writing the continuum position r = 1b we can rewrite the lattice Greens

function as
G(lbing) = b3Gy(rky) . (4.6)
The asymptotic form of the continuum Greens function is

explik, 7}

yp— (4.7)

Go(r ko) =

so that from (4.4) we obtain

o(r) = ethr. AL Vo Da . (4.8)

anbd, & Ir-r,l




..................

Recall that ky = k, rso that the amplitude of the scattered wavefield is

) 4 (ii-i[) = - 4’:&: g g VEoTTa Va Do (4.9)

vl e adek 0.0

since r » | r,l. The dependence of the scattering amplitude on k; is con-

F__§ NN

® tained in D,.

In a subsequent section we calculate f (k; k,) for various numbers and J
configurations of point scatterers. ]
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5. CALCULATION OF LATTICE GREENS FUNCTION

| KR TTSTNT . § LS

It is clear from all our discussion that the scattering of waves off defects

specified by V, on a lattice is completely determined by the lattice Greens func-

N e
YO TY I

tion. On a simple cubic lattice we rewrite (4.5) as

1 TR0y

. S T T ¥, coslz cosmy cosnz
¢(@ximn) = " -{ dz { 2y -{ dz Q- cosz - cosy -cose (5.1)

where the triad ({,m,n) specify the integer lattice coordinates, and G = b2 .
Because the integrand of (5.1) is both singular and oscillatory the numerical
integration is non-trivial and requires a certain amount of discussion. There is a

substantial literature on Greens functions of the form (5.1) since they arise in

the model studies of many physical phenomena e.g. in the study of the distribu-
tion of magnetization around an impurity, i.e. localized spin wave modes and

other problems in condensed matter physics.

The emp.hasis in the literature published on the numerical solutions of (5.1)
has concentrated on obtaining accuxsate values of ¢(0,0,0,0), i.e. the Greens
function at the origin. For the purposes of scattering theory we need to do
much better than this and obtain accurate values of & for arbitrary ({,m.,n) .
Accuracy is quite important in order to faithfully calculate the effect of interfer-
ence among the scattered wave components when many defects are present.
Recall that the exact resuits can be expressed as an infinite perturbation series
so that a modest error in phase in any iterated component could yield substan-

tial spurious effects.

Y in which a

An iterative technique has recently been developed by Morita
knowledge of the Greens function at the three sites (0, 0, 0), (2, 0, 0) and (3, 0, 0)
can be used to generate values of ¥(Q);l ,m ,n) at any of the other lattice coordi-
nates. We do not present Morita's complete arguments here, but rather quote

the equations necessary to calculate the Greens function. In particular we point
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out an error in one of the puoviished expressions.

The recurrence relations that are used to connect the value of the Greens
function at the sites (0, 0, 0), (2, 0, 0) and (3, 0, 0) to its value at other lattice
sites is most easily written in a rotated system of coordinates. We rotate the

angles x and y in (4.1) to X’ and y' as follows:

T ={z+y)/2 , ¥ (z-y)/2
! =l+m ; m =1l-m . (5.2)

so that the Greens function on the rotated system are

e}l .mn) = G (' +m)/2(l'-m')/2.n) (5.3a)

gV t+ml-m,n) = ¢ (l.m,n) (5.3b)
as can be verified by direct substitution into the integral (5.1). Note that I' and

m' are either both even, or both odd integers.

Morita's scheme is based on the difference equation for the lattice Greens

function restricted to the n=0 piane. The specific equation he obtains is
(m’+1)['§‘(l' +2,m' +2,0) + 2% (I',m' +2,0) + Q1 (I'-2,m' +2, 0)]
—2(2m + 1) Q|8 + 1w +1,0) + (T - L + 1,0))
+2m' {sgl(v +2,m',0) + 207 G\(I' m' ,0) + g}(l' -2.m' ,0)]
-2(2m'-1) 0 [T + 1m'~1,0) + G —1,m'~1,0)]
+ (m'—1)[s';'(t' +2,m =2,0) + 2g('\m' -2,0) + G}(I' -2.m' —2.0)] = 0 (5.4)

The manipulation of {5.4) to create a recursion formula for ¢! can be found in

Moritas’ paper. Figure {2) depicts a flow chart of the logic used in the computer

program to obtain %! . The quantities A through F used in this procedure are:

™
PSP T N




i e A A MO A AR DA O e oA e S R A v S B O R At

"
}

-20- =

A=p" { (4p-1) Q {'&"(2}),2.0)4- «,r;l(zp,o,o)] 03

-(2p-1) [29’/ Y2p-1.3,0) + (202 + 1) ! (2p—-1,1,0) ]
+(4p-3) 0 [8'@p-2.20) + (2 -2.00) ]

-(p-1) [‘3‘(2}) -3,3.0) + 39" (2p -3, 1.0)” (5.5a)

B = Q[36'(2p.2.0) + G'(2p.0,0)]
-2[%'(;p-1.3.0) + (¥ G' (2p—~1.1.0)]

+ O[3 (2p-2.2,0) + ¥'(2p-2,0,0)]
-[¢'(2p-3.3.0) -g'(2p-3.1,0)] . (5.5b)

AL ZEE A
i

a
1}

(m'+ 1) [2G'('m' +2,0)+ Q' (I'-2m’ + 2,0) ]
-20(Rm' + D[S+ 1m’ +1.0) + G (U'-1,m’ + 1, 0)]

+2m' [G' (' + 2,m".0) + 20 G' (I'.m",0) + G'(I'-2.m",0)]

=20 (m’-1) [G' (I’ + 1,m’'=1,0) + G'(I'-1.m'-1,0)]

+(m'=1) [€(1'+2,m'~2,0) + 29" (I",m'-2,0)] (5.5¢)
D = (2p+1)7! {2(4p+1)0€9’(2p+1,1.0)

- 4p[%'(2p.2.0) + *F' (2p,0,0) ]

+2(4p-1)0% (2p-1,1,0)

-(2p-1) [9'(2p-2.2,0) + @' (2p-2,0,0)] (5.5d)

E =20[5%"'(2p+1,3,0) + 3G (2p+1,1,0)]

> -86G'(2p,4,0)-80P %' (2p.2,0)-2%'(2p.0.0)




+20[5%'(2p-1,3,0) + 3¥!(2p-1,1,0)]
-39'(2p-2,4,0)-4%9'(2p-2,2,0) - g} (2p-2,0,0) (5.5€)
F = 20[(4+p) %' (2p+1,3,0) + (2~p) @' (2p+1.1,0)] 1
-39'(2p.4.0) - 4 (P(p+1)+1) €' (2p.2,0) + (4p ?*-1) ¢*(2p.0,0) i

+20[(1+p) €' (2p-1.3.0) + (1-p) @' (2p-1.1.0)] (5.5f) 3
Equations (5.5a) - (5.5¢) inclusive, correspond to Egs. (5.7). (5.4) (5.9b) and

(5.10b) of Morita respectively. However, Moritas' Eq. (5.12b) is incorrect and

(5.5e) takes its place.

Finally, to calculate values of ¢!(I'.m'n) for nonzeron (and hence
%(l.m,n) also ), we use a modification of equations {5.3)and (5.4) of Morita

namely

gY1'\m', 1) = QG (", m',O)-é—’g‘(l+1.m'+ 1,0)
+ g ('+1,m'-1,0)+Q ' (I'-i,m’ + 1,0)
-+ @' ('-1.m'-1.0) (5.6)
and, forn= 2,
Ggl(l'm'\,n) =209 ' (' m',n-1) -G (I’ m'.n-2)
-G'U'+1.m'+ln-1)- gW'-1,m'-1,n-1)

-gl(U+1lm'-1,n-1)-g' (I'-i,m'+1,n-1) (5.7)

Before the above recursion scheme can be applied, however, we require
(0,0, 0), ¥(2,0.0) and 9(3,0.0) (2! (0, 0 0), ¢! (2 2 0)and %! (3 3. 0)
as input.

The simple cubic lattice Greens function %(Q ; i, 0, 0) has a convenient
representation in terms of complete elliptic integrals of the first kind B The
Greens function is pure real for 3> ,_ and is given by

”

9(0=31,00) = "12—{ 46 cos (L 0)x K (k) (5.8)
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¥
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\
' where «=2(Q2 - cos8)~! is the parameter of the complete elliptic integral
/2
® " de
K(c)= ——— 5.9
: () 'o[\/l-?sinze (5.9)
t For 1 < 1< 3, one has for the real and imaginary parts of the Greens function :
1 cos~ {1 -2) i
® ¢ R (0:1.00) = = [ dBcos(i0) X (k)
h 0
» 1 "
+ = f dBcos({®)K(x) (5.10)
cos~}{f1-2)
L
1 cog1{1- 2)
E @! (0;1,0,0) = = S d8cos(iB) K (k) (5.11)
()
where
| ®
kK, = « ' and ) = V1-«f . (5.12)
Inthe range 0< ) < 1, we have

cos™In n
GR(N1,00) = nlz—jo' d@cos(1O) K (x, ) + -T:‘—z—m{lndecos(l@)[((lc,) (5.13)
g! (2:1,0,0) = 7:2—[ 40 cos(1@) K (xy) (5.14)
[

where x, and «," are given in (5.12). Formulas (5.8) - (5.14) were numerically
evaluated for ! =0, 2 and 3 and used as input for the recursion scheme previ-
ously described. Figure 3 shows plots of the real and imaginary parts of

©(0:0,0,0), 9(0;2 0 0)and 9(N; 3,0, 0).
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6. RESULTS OF SCATTERING CALCULATIONS

o In this section we present some results of scattering plane waves off various

planar configurations of point scatterers. We have chosen the incident radiation

to have wavelength equal to the lattice spacing b, and to propagate in the z
® direction. All scatterers lie in the perpendicular x-y plane. Polar angles 0, ¢

define the directions along which we view the scattering amplitude f(8, ) (see
figure 4).

A Scattering From a Line.

The first sequence of numerical results we show are polar perspective plots
of the magnitude It (8,9) lfor one, two, three, four and five scatterers arranged
to form aline. If just a single scattering center is present (located at the origin
(0, 0, 0), say), there are no preferred directions for the scattering, theref-~re Il
is uniform over all angles ©,¢ . The result of adding a second scattered at (1, 0,
0) is shown in Figure 5a. (The number and positior: 47 t:-e scatterers is indicated
in the upper left hand corner of the figure.) We see that the scattering ampli-

tude in maximal in all directions perpendicular to the preferred axis, i.e. along

¢ = n/2and 3n/2 for all @ values. | £ | is also maximal parallel to the x-axis,
at ¢ =0, mand ® = m /2. The amplitude decreases away from these direc-
tions due to destructive interference among ray paths. The addition of a third
scatterer, at (2, 0, 0), gives rise to Figure 5b. The directions of maximall f |
remains the same (serving to identify the line of scatterers), but!f!decreases
more rapidly away from these regions than for the case of two scatterers. More
significantly, a subsidiary ridge has appeared as a new topographic feature,
marking the influence of multiple scattering events. Figures S5c and 5d show the
effect of adding a fourth and a fifth defect. We see a further sharpening of the

main ridges, and the introduction of additional subsidiary ridges.

......................
.............
...............................................................
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B. Scattering from Perpendicular Lines

@ Figures Ba - 8d show a sequence of plots of [t (B.p) | as we add to the line,

B PP

but now in a perpendicular direction. This sequence is most easily understood if
we first consider the scattering off a line of defects arranged along the y-axis

® (instead of the arrangement aiong the x-axis which led to Figure 5d). Symmetry

BWR.. L,

implies that such an arrangement should lead to a scattering amplitude f ( @, ¢ )
related to the previous amplitude by the rotation 8, ¢ + 0,9 + 7/ 2. All features ‘

@ _ of the perspective plot of It! would simply be shifted by 7/ 2 along the g - axis.

Bearing this in mind, the depression along the ridgesat ¢ = n/2, 3n/2in

figure 8a and subsequent plots is understood as a combination of Figures 5d with R
® the shifted versions of Sb - 5e. The configuration of scatterers which gave rise to

Figure 8d has a symmetry line along ¢ = n/ 4, and we clearly see their sym-

metry in the scattering amplitude plot. The sequence of Figures 6a - 6d is a pro-
° gression toward this symmetric arrangement.

C. Scattering From a Plane.

We now consider adding parallel lines of scatterers so as to form a plane

® square made out of twenty five scatterers. Figures 7a - 7d show the relevant
sequence of plots. It helps to realize that the final square configuration {(produc-
ing Figure 7d) is symmetric around ¢ = 0, 77/ 4 and n/2 . The sequence of Fig-
@ ures 7a - 7d shows progression toward the symmetric result.

D. Scattering From a Cavity.

Finally, we consider scattering from cavities obtained from the square

[ configuration of Figure 7d by removing scatterers from the interior. Comparing
Figures 7d and 8c it is apparent that there is significantly more structure in the
cross section for scattering from a cavity than for scattering from the rectan-

@ gle. The increased multiple scattering effects in the cavity enhance the subsidi-

ary maxima at ® = n/4, n/2 and 3n/2.
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® Figure 1. (a) Single scattering of plane wave by potential at site 1,.
(b) Double scattering of plane wave from lattice site 1, to lattice site 13,
followed by scattering from 13to observer.
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CALCULATE %(0,0.0). 9(2.0.0). 5(3.0.0) BY DIRECT INTEGRATION 4

ALL OTHER GREEN'S FUNCTIONS ARE DETERMINED BY THESE THREE
o -
p =1 i
—e -
%'(2p+1.1.0) = (4-8)/2
® %'(1.2p+1.0) = §(2p+1.1,0) <
%'(2p+1.3.0) = B-1Q'(2p+1.1.0) -
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@ (2,0.0), and (3.0, 0). These are used as input for Morita's recursion

scheme.




v v -7 et D asust s MABe g i o el el Sauie ASEL st Clase i st oo il -l M
LA e par b et A A A O A A M . ST T e e PR . . . s

§
3
-1 TIPSR S N L...n_g_':

.

Figure 4. Polar angles @, ¢ for viewing scattering amplitude f( 6,yp).
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